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Abstract. This paper deals with the asymptotic behaviour of solutions for the Benjamin—Bona—
Mahony equation. We first show the existence of the global weak attractor for this equation in
H1. And then by an idea of Ball, we prove that the global weak attractor is actually the global
strong attractor. The finite-dimensionality of the global attractor is also established.

1. Introduction

In this paper, we investigate the finite-dimensional behaviour of solutions for the Benjamin—
Bona—Mahony equation given by

Up — Uxxr — VUyy + (f(u))x = g(x) in Q x R+ (11)

wherev > 0, f : R — R is a smooth functiong(x) € L?(Q), Q C R is a bounded
interval.
We note that iff (u) = u + %uz, then equation (1.1) becomes

Up — Uxyy — VUyy + Uy + Ul = g(x) (12)

Equation (1.2) has been proposed as a model for propagation of long waves and incorporates
nonlinear dispersive and dissipative effects. The existence and uniqueness of solutions for
this equation has been investigated by many authors, such as Bona and Dougalis [1], Bona
and Smith [2], Showalter [3], Amiclet al [4]. In the casev = 0, this equation has been
studied by Benjamiret al [5], Bona and Bryant [6], Medeiros and Miranda [7], Medeiros

and Menzala [8], Albert [9], Biler [10], and the references therein.

The aim of this paper is to derive the existence of the global attractor for equation (1.1)
in H(2) which has finite Hausdorff and fractal dimensions. Since the nonlinear semigroup
S(t) defined by equation (1.1) is not compact Ht($2), we cannot construct the global
attractor by the method introduced by Temam [11], or Constagitad [12]. Here we first
employ the techniques developped by Ghidaglia [13] to show the existence of global weak
attractor for equation (1.1) if/1(RQ2). For that purpose, it is necessary that the semigroup
S(t) should be weakly continuous () for everyr > 0. Here we apply a direct method
to establish the weak continuity of(r) in H(2). After we obtain the existence of the
global weak attractor, by an energy equation and an idea of Ball [15] we conclude that the
global weak attractor is actually the global strong attractorsf@y in H(Q).

0305-4470/97/134877+09$19.5@C) 1997 I0OP Publishing Ltd 4877



4878 Bixiang Wang and Wanli Yang

This paper is organized as follows. In section 2, we recall some facts about the solution
semigroupS(¢). By a direct method we show thair) is weakly continuous irH(2) for
everyt > 0. In section 3, we establish the uniforapriori estimates inH(Q). Then by
an idea of Ball [15] we show the existence of the global attractoStoy in H().

2. The nonlinear semigroup

We consider the following Benjamin—Bona—Mahony equation:

Up = Uyyy — Vilex + (f)y = g(x)  (x,1) € Ax RT (2.1)
with the initial condition

u(x,0) = ug(x) x €N (2.2)
and the periodic boundary condition

Q=(0,0L) and u is Q-periodic (2.3)

wherev is a positive constantf : R — R is a smooth functiong(x) € Lger(Q). Similar to

the methods used in [1] or [7] we can easily deduce Yagte leer(sz), problem (2.1)—(2.3)
possesses a unique solutiefr) defined onR™* such that

u(t) € L*(0, T; HY(Q)) %L; e L=, T; HY()) VT > 0.

This shows that system (2.1)—(2.3) defines a solution semigsgupwhich mapsH*(2)
to H1(RQ) such thatS(r)ug = u(t), the solution of problem (2.1)—(2.3).

Let H = L3.(S) be the Hilbert space endowed with its usual inner produci and
norm||- |, || - I, denote the norm of”(Q2) forall 1 < p < oo([|-llz = |- ). || - [lx denotes
the norm of any Banach spacde

For later purpose, we first establish the following.

Theorem 2.1Assume thatg(x) € Lger(Q), uo € HYX). Then the dynamical system
S(t) : HY(Q) — HY(Q) is weakly continuous for every > 0.

Proof. Vvt > O fixed, we shall shows(r;) is weakly continuous fromH1(Q) to H1(Q).
Assume now that
Uor = Wo weakly in H1(2) (2.4)

our aim is to show thas(t1)ug. — S(t1)wo weakly in H1(Q). ChooseT > t;, and denote
by ui(t) = S@)uor, w(t) = S(t)wp. Since the weak convergence implies the boundedness,
it follows that

luokll i) < R (2.5)

whereR is a constant independent bf
Note thatu, (r) satisfies

Ukr — Ukxxr — VUgxx + (f(uk))x = g()C) (26)
Taking the inner product of (2.6) withy in H, we find that
1d

1d
ﬁnuku% éa||ukx||2+ v||ukx||2+/9<f<uk)>xuk dr = (g, up).  (2.7)

Set
F(s):/‘ f(r)dr
0
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then we have
0
/ (f Gug) g e = — / Fluug, = — / S Fu) dr =0, (2.8)
Q Q Q 0X
It comes from (2.7), (2.8) that

d
a<||uk||2 + e 1) + 20 e 12 < Nlgll? + el (2.9)
By (2.9) and the Gronwall lemma we see that

luk (O + g D117 < € (lug O + lurc (O + Il glI%€
< R% + |gl%€ (by (2.5))

And hence
k)3 <€ VO<E<T (2.10)

whereC is a constant depending dh
Taking the inner product of (2.6) withy, in H, we find that

litge 12+ Nttgne 12 = =V (e txar) + (F W), ttionr) + (g5 ks
< e lNetaoee || 11 F @) Wltge |+ g e -

By (2.10) and Agmon inequality
1

lulloo < Cllul2llulZg, —~— Yue HYS) (2.11)
we obtain that

I fur®)lloo < C vO<t <T. (2.12)
And then it follows that

otk 12 + Ntre 12 < Cllgell + Cllugae | < Sl | + Slluse > +C - (2.13)
which implies that

ke 2y < 2C Vo<t <T. (2.14)

By (2.10) and (2.14) we find that there existe HY(Q), u(t) € L=(0, T; HY(Q)) and a
subsequence, which is still denoted dy such that

up(ty) — 0 weakly in H(Q) (2.15)
up(t) = u(t) in L>®(0, T; HX(2)) weak star (2.16)
Uy, — U in L0, T; H(2)) weak star (2.17)

By (2.16), (2.17) and a compactness theorem [16] we infer that
up(t) — u(t) in L2(0, T; H) strongly. (2.18)
Vv € Hpe(Q2), V¥ (1) € CF(0, T), by (2.6) we claim that

T T T
/ (e, ¥ (1)) dt + / (s, ¥ ()00 i+ v / (s ¥ (01
0 0 0

T T
- /O (f ), ¥ (o) dr = /0 (g. ¥ ()v) . (2.19)
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Note that

T T T
‘/0 (f(uk),lﬁ(l)vx)dt—/o (f (), ¥ (D) dt | = ‘/0 (f (ue) = f ), ¥ (@)vy) ot

T T
< /0 I1f (i) — f@) Y vl dr < IIf/(E)Iloo/0 e — wllllyr () vx || e

< ClY O vellzo,r:mllue — ull 2oy — 0 (by (2.18)). (2.20)
Taking the limit of (2.19) ag — oo, by (2.16), (2.17) and (2.20) we find that

T T T
/(uf,v)wr)dw/ (un,vxw(r)dwvf (tr, v (1) i
0 0 0

T T
- [ avvns = [ @ovod. (2.21)
0 0
Hence, the following holds in the sense of distributions
Uy — Uyxs — Vlyy + (f(u))x = g(x) (222)
that is,u(¢) satisfies equation (2.1).

Vv € Hpe(2), V¥ (1) € C*[0, T] with ¥(T) = 0, ¥(0) = 1, by (2.6) we obtain that

T T T
—/ (uk,v)w/(t)dﬂr/ (ukx,,vx)w(t)dﬂrv/ (g, V)W (t) dt
0 0 0

T T
—[O (f (up), vy (1) dr = (uk(O),v)+/0 (g, V)Y () dr. (2.23)

Assumption (2.4) implies that
ur(0) = ugy — wo weakly in H. (2.24)
Then taking the limit of (2.23) as before, by (2.24) we obtain that

T T T
—/ (u, )Y () dt+f (e, V)Y (1) dt+v/ (ux, v)Y (1) dt
0 0 0

T T
- /O (F @), vopr(0) dr = (wo, v) + /0 (g, V)Y (1) dr. (2.25)

On the other hand, by (2.22) we infer that
T T T
—[ (u, V)Y (1) dt+/ (uxz,vx)lﬁ(t)dtﬂ/ (uy, v) ¥ (1) dt
0 0 0

—[OT(f(u), v) Y (1) df = (u(0), v) + /OT(g, V)Y (1) dr. (2.26)
It comes from (2.25), (2.26) that

(0), v) = (wo, v) Vv € Hpp(Q).
This shows that

u(0) = wo. (2.27)
And thus by (2.22) and (2.27) we see that

u(t) = SHwo = w(t). (2.28)
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Yv € leer(sz), Vi (t) € C*[0, 11] with ¥ (0) = 0, ¥ (1) = 1, then repeating the procedure
of proofs of (2.23)—(2.26), by (2.15) we find that

(u(r1), v) = (0, v) Vv e leer(sz). (2.29)
It follows from (2.28), (2.29) that

0 = u(r) = S(r)wo.
And then (2.15) implies that

S(t)uoge — S(t)wo weakly in H1(2)
which concludes theorem 2.1. O

3. The global attractor

In this section, we construct a global attractor for the problem (2.1)—(2.3). To the end, we
assume that

gx) e Lser(Q) and / gx)dx =0. (3.1)
Q

And then integrating (2.1) oveR and applying (2.3) we find that the averageudf) is
conserved, i.e. for all > O:

1 1
O (t)) = — / u(x,t)dx = —f ug(x) dx = 0 (ug). 3.2)
12| Jo 192] Jo
This shows that problem (2.1)—(2.3) has not bounded absorbing sets in the wholespace
This difficulty is overcome by introducing
H,={ueH: |0 <a}.

Equation (3.2) implies tha#, is invariant under the semigroufxz) associated to system
(2.1)—(2.3).
In the sequel, we will show that bounded absorbing setd jrdo indeed exist.

Lemma 3.1Assume that (3.1) holdsyg € leer(Q) () H,. Then for the solution(z) of
problem (2.1)—(2.3) we have

lu@pr < K Vi =z n

where K is a constant depending only on the déta f, g, 2, «), 1 depends on the data
(v, f, g, 2, a) and R when |ug||z: < R.

In the following, we agree thatug € H,
u—0) O(u) = i / u(x)dx. (3.3)
12 Jo

Proof. We note that
u(t) = u(t) + 60 u)) (by (3.3))

u

= u(t) + 6(uo) (by (3.2)) (3.4)
Substituting (3.4) into (2.1) we find that
’/_lt - ﬁxxt - Vﬁxx + (f(u))x = g(x) (35)

Taking the inner product il of (3.5) with & we infer that

1d _, 1d _ , L
éallull +§d7IIMXII + vfluxl +_/Q(f(u))xudX—(g,u)- (3.6)
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Let
F(s) = / f(r)dr
0

then we find that

/ (F)iids = — f Fwiiy dr = / F oy de
Q Q Q

=— / (F(w)),dx = —F(u(L)) + F(u(0)) =0. 3.7
We recall the Poincérinequality i
ol < Calesl [ vdr =0 (3.8)
By (3.3) we see that i
/ﬁ(x,t)dx = /(u(x,t) —6(u)) dx
Q Q

= / u(x,t)dx — / ulx,t)de =0 (by (3.2)) (3.9
Q Q
and then it comes from (3.8), (3.9) that
la@ I < Callux @) vt > 0. (3.10)
Thus
(g, ] < llgllall < C1||g||||ﬁx||<zlu)||b'tx||2 + G2 (by Young inequality). (3.11)

In the sequel, we denote by andC; (i = 1, 2,...) any constants depending only on the
data(v, f, g, 2, a).
By (3.6), (3.7) and (3.11) we have
d _ _ 3
g U+ 1) + Svllid® < 2C,. (3.12)
Due to
vllal? = Fvllil® + vl |?
> vl +vClal®  (by (3.10)
> Ca(llall? + lliac 1) (3.13)
whereCz = min{3v, vC; 2.
By (3.12), (3.13) we claim that
d _ _ _ _
g (% + ill®) + Co(liih® + | < 2C; - Ve > 0.
By the Gronwall lemma we obtain that

2C
()1 + i 112 < ([ (0)]|? + ||it, (0)|P)e " + FZ

<A+ CDIEOP + T2 (by (3.10)

= (14 C))llu,(0) e~ + %C; (by (3.3))

<A+ C?HR%e S + 2%2 Vi >0

<A vy, (3.14)

Cs
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wheret, = C% In %CC;)RZ.
Since
/ i(x, )0 u(x, 1) dx = O u(x, t))f i(x,)dx =0 (by (3.9)) (3.15)
Q Q

and therefore we see thatr) ando(u(z)) are orthogonal ind. Thus we obtain that
lu@)[1? = @@ + 10 @)1? = @@l + 10 w)|?|L|

< Na@®)? + «?12| (by (3.2) andug € H,). (3.16)
We claim that
lu@ N1 = lu@1? + w12 < N1 + i @)1 + 2|2 (by (3.16))
4
<20 by R19)
Cs
which concludes lemma 3.1. O

Obviously, lemma 3.1 implies that the ball

B={uecHYNQ): |ullg <K} (3.17)
is an absorbing set fa(z) in HX(Q) () H,.
Let
A=UJsoB (3.18)
s=012s

where the closure is taken with respect to #i&weak topology. And then by theorem 2.1
we know thatA is a global (weak) attractor fdf(¢). More precisely, we have the following.

Theorem 3.1Let (3.1) hold. Then the sefl defined by (3.18 ) satisfies that

(i) A is bounded and weakly closed ' (Q2) N H,;

(i) S(HA=AVr>0;

(iii) for every bounded seX in H'(Q), S(t)X converges tad with respect to the
H'-weak topology as — oo.

Proof. This theorem can be derived by theorem 2.1 and the techniques of [13]. The details
are similar to that of [13], and so they are omitted here. O

We now apply the method introduced by Ball [15] to show tHais actually the global
strong attractor inH%().

Theorem 3.2The global weak attractad constructed in theorem 3 is actually the global
strong attractor inH%(Q).

Proof. Since a pointw belongs to the attractod if and only if there exist two sequences
{wdhen and{fihren such thatS(s)w? converges tav weakly in H1(Q2), where{w?} € B,
the bounded absorbing set (), # — +oo. This theorem will be proved if we are
able to show that fow € A, the sequenc@(tk)w,g converges tav strongly in H1().

Fix T > 0, by lemma 3.1 we know that the sequesgg — 7)w? is bounded inH(2),
and therv € H'(Q) and a subsequence exist, which are still denoted @y— 7)w?, such
that

St — THw? — v weakly in H1(Q). (3.19)

Setwy(t) = S()SW — T)w? = St + ¢ — T)w?, by theorem 2.1 and (3.19) we see that
wi (1) — S(t)v weakly in HX(Q), andw = S(T)v.
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We note that ifu(¢) is a solution of problem (2.1)—(2.3), then by taking the inner product
of (2.1) withu in H, we obtain that

%(Ilullz e l1) A+ 20 a2 + 2/Q<f<u>)xu dx = 2(g, u). (3-20)
Similar to (3.7) we see that

2/ (f () ,u dx = —2/ fwu, dx = 0. (3.21)
And then by (3.290), (3.21) we have )

%nu(r)niﬂ + 20[|lu @)l = 2v[lu®)|1* + 2(g. ). (3.22)
This shows that

@)% = €2 |u(O) |17 + fo N K (u(r) e (3.23)
where

K (u) = 2vllu|l® + 2(g, u). (3.24)

By compactness embedding'(Q) ¢ H we can easily deduce that (u) is weakly
continuous in HX(). Because any solution satisfies (3.23), and then () =
S#)S(t — THw?, we infer that

1
lwe I3 = €2 1St — TYwlZ + / K (S + 1 — T)w)) dr. (3.25)
0
Takingt = T in (3.25), by the Lebesgue dominated convergence theorem we deduce that
T
lim sup||S(t)wl||%, < ce™®T +/ DK (S(t)v) dr. (3.26)
k— 00 0

The above is obtained by the boundedness @f — T)w? in HX(Q).
Applying (3.23) forw = S(T)v we have

T
w7, = e 2T |v%, +f DK (S(1)v) dr. (3.27)
0
By (3.26) and (3.27) we have
limsup|| St w2, < Ce®7 + w2 — e 27 ||v)2.. (3.28)
k—o00

Let T — +oo, we find that

lim sup|| St)well%: < llwll:. (3:29)

k—o00

On the other hand, by the weak convergenc6(o;t)w,? to w in H1(Q), we see that

liminf 1S @)wgli g > wlf. (330)

And then we have
Jim (1S @O = lwlis. (331)

This along with the weak convergence implies the strong convergence. The proof of
theorem 3.2 is complete. O
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Quite analogous to [14] where we dealt with the finite-dimensionality of the global
attractor in H2($2), we can also deduce the finite-dimensionality of the global attradtor
here. That is, we have the following.

Theorem 3.3The global attractorA of theorem 3.1 has finite fractal and Hausdorff
dimensions inH1(Q).
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