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Abstract. This paper deals with the asymptotic behaviour of solutions for the Benjamin–Bona–
Mahony equation. We first show the existence of the global weak attractor for this equation in
H 1. And then by an idea of Ball, we prove that the global weak attractor is actually the global
strong attractor. The finite-dimensionality of the global attractor is also established.

1. Introduction

In this paper, we investigate the finite-dimensional behaviour of solutions for the Benjamin–
Bona–Mahony equation given by

ut − uxxt − νuxx + (f (u))x = g(x) in �× R+ (1.1)

where ν > 0, f : R → R is a smooth function,g(x) ∈ L2(�), � ⊂ R is a bounded
interval.

We note that iff (u) = u+ 1
2u

2, then equation (1.1) becomes

ut − uxxt − νuxx + ux + uux = g(x). (1.2)

Equation (1.2) has been proposed as a model for propagation of long waves and incorporates
nonlinear dispersive and dissipative effects. The existence and uniqueness of solutions for
this equation has been investigated by many authors, such as Bona and Dougalis [1], Bona
and Smith [2], Showalter [3], Amicket al [4]. In the caseν = 0, this equation has been
studied by Benjaminet al [5], Bona and Bryant [6], Medeiros and Miranda [7], Medeiros
and Menzala [8], Albert [9], Biler [10], and the references therein.

The aim of this paper is to derive the existence of the global attractor for equation (1.1)
in H 1(�) which has finite Hausdorff and fractal dimensions. Since the nonlinear semigroup
S(t) defined by equation (1.1) is not compact inH 1(�), we cannot construct the global
attractor by the method introduced by Temam [11], or Constantinet al [12]. Here we first
employ the techniques developped by Ghidaglia [13] to show the existence of global weak
attractor for equation (1.1) inH 1(�). For that purpose, it is necessary that the semigroup
S(t) should be weakly continuous inH 1(�) for everyt > 0. Here we apply a direct method
to establish the weak continuity ofS(t) in H 1(�). After we obtain the existence of the
global weak attractor, by an energy equation and an idea of Ball [15] we conclude that the
global weak attractor is actually the global strong attractor forS(t) in H 1(�).
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This paper is organized as follows. In section 2, we recall some facts about the solution
semigroupS(t). By a direct method we show thatS(t) is weakly continuous inH 1(�) for
every t > 0. In section 3, we establish the uniforma priori estimates inH 1(�). Then by
an idea of Ball [15] we show the existence of the global attractor forS(t) in H 1(�).

2. The nonlinear semigroup

We consider the following Benjamin–Bona–Mahony equation:

ut − uxxt − νuxx + (f (u))x = g(x) (x, t) ∈ �× R+ (2.1)

with the initial condition

u(x, 0) = u0(x) x ∈ � (2.2)

and the periodic boundary condition

� = (0, L) and u is �-periodic (2.3)

whereν is a positive constant,f : R→ R is a smooth function,g(x) ∈ L2
per(�). Similar to

the methods used in [1] or [7] we can easily deduce that∀u0 ∈ H 1
per(�), problem (2.1)–(2.3)

possesses a unique solutionu(t) defined onR+ such that

u(t) ∈ L∞(0, T ;H 1(�))
∂u

∂t
∈ L∞(0, T ;H 1(�)) ∀T > 0.

This shows that system (2.1)–(2.3) defines a solution semigroupS(t) which mapsH 1(�)

to H 1(�) such thatS(t)u0 = u(t), the solution of problem (2.1)–(2.3).
Let H = L2

per(�) be the Hilbert space endowed with its usual inner product(·, ·) and
norm‖ · ‖, ‖ · ‖p denote the norm ofLp(�) for all 16 p 6∞(‖ · ‖2 = ‖ ·‖). ‖ · ‖X denotes
the norm of any Banach spaceX.

For later purpose, we first establish the following.

Theorem 2.1.Assume thatg(x) ∈ L2
per(�), u0 ∈ H 1(�). Then the dynamical system

S(t) : H 1(�)→ H 1(�) is weakly continuous for everyt > 0.

Proof. ∀t1 > 0 fixed, we shall showS(t1) is weakly continuous fromH 1(�) to H 1(�).
Assume now that

u0k → w0 weakly inH 1(�) (2.4)

our aim is to show thatS(t1)u0k → S(t1)w0 weakly inH 1(�). ChooseT > t1, and denote
by uk(t) = S(t)u0k, w(t) = S(t)w0. Since the weak convergence implies the boundedness,
it follows that

‖u0k‖H 1(�) 6 R (2.5)

whereR is a constant independent ofk.
Note thatuk(t) satisfies

ukt − ukxxt − νukxx + (f (uk))x = g(x). (2.6)

Taking the inner product of (2.6) withuk in H , we find that

1

2

d

dt
‖uk‖2+ 1

2

d

dt
‖ukx‖2+ ν‖ukx‖2+

∫
�

(f (uk))xuk dx = (g, uk). (2.7)

Set

F(s) =
∫ s

0
f (τ) dτ
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then we have∫
�

(f (uk))xuk dx = −
∫
�

f (uk)ukx = −
∫
�

∂

∂x
F(uk) dx = 0. (2.8)

It comes from (2.7), (2.8) that

d

dt
(‖uk‖2+ ‖ukx‖2)+ 2ν‖ukx‖2 6 ‖g‖2+ ‖uk‖2. (2.9)

By (2.9) and the Gronwall lemma we see that

‖uk(t)‖2+ ‖ukx(t)‖2 6 et (‖uk(0)‖2+ ‖ukx(0)‖2)+ ‖g‖2et

6 R2et + ‖g‖2et (by (2.5)).

And hence

‖uk(t)‖2
H 1(�)

6 C ∀06 t 6 T (2.10)

whereC is a constant depending onT .
Taking the inner product of (2.6) withukt in H , we find that

‖ukt‖2+ ‖ukxt‖2 = −ν(ukx, ukxt )+ (f (uk), ukxt )+ (g, ukt )
6 ν‖ukx‖‖ukxt‖ + ‖f (uk)‖‖ukxt‖ + ‖g‖‖ukt‖.

By (2.10) and Agmon inequality

‖u‖∞ 6 C‖u‖ 1
2‖u‖

1
2

H 1(�)
∀u ∈ H 1(�) (2.11)

we obtain that

‖f (uk(t))‖∞ 6 C ∀06 t 6 T . (2.12)

And then it follows that

‖ukt‖2+ ‖ukxt‖2 6 C‖ukt‖ + C‖ukxt‖ 6 1
2‖ukt‖2+ 1

2‖ukxt‖2+ C (2.13)

which implies that

‖ukt‖2
H 1(�)

6 2C ∀06 t 6 T . (2.14)

By (2.10) and (2.14) we find that there existθ ∈ H 1(�), u(t) ∈ L∞(0, T ;H 1(�)) and a
subsequence, which is still denoted byuk, such that

uk(t1)→ θ weakly inH 1(�) (2.15)

uk(t)→ u(t) in L∞(0, T ;H 1(�)) weak star (2.16)

ukt → ut in L∞(0, T ;H 1(�)) weak star. (2.17)

By (2.16), (2.17) and a compactness theorem [16] we infer that

uk(t)→ u(t) in L2(0, T ;H) strongly. (2.18)

∀v ∈ H 1
per(�), ∀ψ(t) ∈ C∞0 (0, T ), by (2.6) we claim that∫ T

0
(ukt , ψ(t)v)dt +

∫ T

0
(ukxt , ψ(t)vx) dt + ν

∫ T

0
(ukx, ψ(t)vx) dt

−
∫ T

0
(f (uk), ψ(t)vx) dt =

∫ T

0
(g, ψ(t)v)dt. (2.19)
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Note that∣∣∣∣ ∫ T

0
(f (uk), ψ(t)vx) dt −

∫ T

0
(f (u), ψ(t)vx) dt

∣∣∣∣ = ∣∣∣∣ ∫ T

0
(f (uk)− f (u), ψ(t)vx) dt

∣∣∣∣
6
∫ T

0
‖f (uk)− f (u)‖‖ψ(t)vx)‖ dt 6 ‖f ′(ξ)‖∞

∫ T

0
‖uk − u‖‖ψ(t)vx‖ dt

6 C‖ψ(t)vx‖L2(0,T ;H)‖uk − u‖L2(0,T ;H)→ 0 (by (2.18)). (2.20)

Taking the limit of (2.19) ask→∞, by (2.16), (2.17) and (2.20) we find that∫ T

0
(ut , v)ψ(t)dt +

∫ T

0
(uxt , vx)ψ(t) dt + ν

∫ T

0
(ux, vx)ψ(t) dt

−
∫ T

0
(f (u), vx)ψ(t) dt =

∫ T

0
(g, v)ψ(t)dt. (2.21)

Hence, the following holds in the sense of distributions

ut − uxxt − νuxx + (f (u))x = g(x) (2.22)

that is,u(t) satisfies equation (2.1).
∀v ∈ H 1

per(�), ∀ψ(t) ∈ C∞[0, T ] with ψ(T ) = 0, ψ(0) = 1, by (2.6) we obtain that

−
∫ T

0
(uk, v)ψ

′(t) dt +
∫ T

0
(ukxt , vx)ψ(t) dt + ν

∫ T

0
(ukx, vx)ψ(t) dt

−
∫ T

0
(f (uk), vx)ψ(t) dt = (uk(0), v)+

∫ T

0
(g, v)ψ(t)dt. (2.23)

Assumption (2.4) implies that

uk(0) = u0k → w0 weakly inH. (2.24)

Then taking the limit of (2.23) as before, by (2.24) we obtain that

−
∫ T

0
(u, v)ψ ′(t) dt +

∫ T

0
(uxt , vx)ψ(t) dt + ν

∫ T

0
(ux, vx)ψ(t) dt

−
∫ T

0
(f (u), vx)ψ(t) dt = (w0, v)+

∫ T

0
(g, v)ψ(t)dt. (2.25)

On the other hand, by (2.22) we infer that

−
∫ T

0
(u, v)ψ ′(t) dt +

∫ T

0
(uxt , vx)ψ(t) dt + ν

∫ T

0
(ux, vx)ψ(t) dt

−
∫ T

0
(f (u), vx)ψ(t) dt = (u(0), v)+

∫ T

0
(g, v)ψ(t)dt. (2.26)

It comes from (2.25), (2.26) that

(u(0), v) = (w0, v) ∀v ∈ H 1
per(�).

This shows that

u(0) = w0. (2.27)

And thus by (2.22) and (2.27) we see that

u(t) = S(t)w0 = w(t). (2.28)
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∀v ∈ H 1
per(�), ∀ψ(t) ∈ C∞[0, t1] with ψ(0) = 0, ψ(t1) = 1, then repeating the procedure

of proofs of (2.23)–(2.26), by (2.15) we find that

(u(t1), v) = (θ, v) ∀v ∈ H 1
per(�). (2.29)

It follows from (2.28), (2.29) that

θ = u(t1) = S(t1)w0.

And then (2.15) implies that

S(t1)u0k → S(t1)w0 weakly inH 1(�)

which concludes theorem 2.1. �

3. The global attractor

In this section, we construct a global attractor for the problem (2.1)–(2.3). To the end, we
assume that

g(x) ∈ L2
per(�) and

∫
�

g(x) dx = 0. (3.1)

And then integrating (2.1) over� and applying (2.3) we find that the average ofu(t) is
conserved, i.e. for allt > 0:

θ(u(t)) = 1

|�|
∫
�

u(x, t)dx = 1

|�|
∫
�

u0(x) dx = θ(u0). (3.2)

This shows that problem (2.1)–(2.3) has not bounded absorbing sets in the whole spaceH .
This difficulty is overcome by introducing

Hα = {u ∈ H : |θ(u)| 6 α}.
Equation (3.2) implies thatHα is invariant under the semigroupS(t) associated to system
(2.1)–(2.3).

In the sequel, we will show that bounded absorbing sets inHα do indeed exist.

Lemma 3.1.Assume that (3.1) holds,u0 ∈ H 1
per(�)

⋂
Hα. Then for the solutionu(t) of

problem (2.1)–(2.3) we have

‖u(t)‖H 1 6 K ∀t > t1
whereK is a constant depending only on the data(ν, f, g,�, α), t1 depends on the data
(ν, f, g,�, α) andR when‖u0‖H 1 6 R.

In the following, we agree that∀u0 ∈ H ,

ū = u− θ(u) θ(u) = 1

|�|
∫
�

u(x) dx. (3.3)

Proof. We note that

u(t) = ū(t)+ θ(u(t)) (by (3.3))

= ū(t)+ θ(u0) (by (3.2)). (3.4)

Substituting (3.4) into (2.1) we find that

ūt − ūxxt − νūxx + (f (u))x = g(x). (3.5)

Taking the inner product inH of (3.5) with ū we infer that

1

2

d

dt
‖ū‖2+ 1

2

d

dt
‖ūx‖2+ ν‖ūx‖2+

∫
�

(f (u))xū dx = (g, ū). (3.6)
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Let

F(s) =
∫ s

0
f (τ) dτ

then we find that∫
�

(f (u))xū dx = −
∫
�

f (u)ūx dx = −
∫
�

f (u)ux dx

= −
∫
�

(F (u))x dx = −F(u(L))+ F(u(0)) = 0. (3.7)

We recall the Poincaré inequality

‖v‖ 6 C1‖vx‖ if
∫
�

v(x) dx = 0. (3.8)

By (3.3) we see that∫
�

ū(x, t)dx =
∫
�

(u(x, t)− θ(u)) dx

=
∫
�

u(x, t)dx −
∫
�

u(x, t)dx = 0 (by (3.2)) (3.9)

and then it comes from (3.8), (3.9) that

‖ū(t)‖ 6 C1‖ūx(t)‖ ∀t > 0. (3.10)

Thus

|(g, ū)| 6 ‖g‖‖ū‖ 6 C1‖g‖‖ūx‖6 1
4ν‖ūx‖2+ C2 (by Young inequality). (3.11)

In the sequel, we denote byC andCi (i = 1, 2, . . .) any constants depending only on the
data(ν, f, g,�, α).

By (3.6), (3.7) and (3.11) we have
d

dt
(‖ū‖2+ ‖ūx‖2)+ 3

2
ν‖ūx‖2 6 2C2. (3.12)

Due to
3
2ν‖ūx‖2 = 1

2ν‖ūx‖2+ ν‖ūx‖2

> 1
2ν‖ūx‖2+ νC−2

1 ‖ū‖2 (by (3.10))

> C3(‖ū‖2+ ‖ūx‖2) (3.13)

whereC3 = min{ 12ν, νC−2
1 }.

By (3.12), (3.13) we claim that
d

dt
(‖ū‖2+ ‖ūx‖2)+ C3(‖ū‖2+ ‖ūx‖2) 6 2C2 ∀t > 0.

By the Gronwall lemma we obtain that

‖ū(t)‖2+ ‖ūx(t)‖2 6 (‖ū(0)‖2+ ‖ūx(0)‖2)e−C3t + 2C2

C3

6 (1+ C2
1)‖ūx(0)‖2e−C3t + 2C2

C3
(by (3.10))

= (1+ C2
1)‖ux(0)‖2e−C3t + 2C2

C3
(by (3.3))

6 (1+ C2
1)R

2e−C3t + 2C2

C3
∀t > 0

6 4C2

C3
∀t > t∗ (3.14)
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wheret∗ = 1
C3

ln C3(1+C2
1)R

2

2C2
.

Since∫
�

ū(x, t)θ(u(x, t))dx = θ(u(x, t))
∫
�

ū(x, t)dx = 0 (by (3.9)) (3.15)

and therefore we see thatū(t) andθ(u(t)) are orthogonal inH . Thus we obtain that

‖u(t)‖2 = ‖ū(t)‖2+ ‖θ(u)‖2 = ‖ū(t)‖2+ |θ(u)|2|�|
6 ‖ū(t)‖2+ α2|�| (by (3.2) andu0 ∈ Hα). (3.16)

We claim that

‖u(t)‖2
H 1 = ‖u(t)‖2+ ‖ux(t)‖2 6 ‖ū(t)‖2+ ‖ūx(t)‖2+ α2|�| (by (3.16))

6 4C2

C3
+ α2|�| (by (3.14))

which concludes lemma 3.1. �
Obviously, lemma 3.1 implies that the ball

B = {u ∈ H 1(�) : ‖u‖H 1 6 K} (3.17)

is an absorbing set forS(t) in H 1(�)
⋂
Hα.

Let

A =
⋂
s>0

⋃
t>s
S(t)B (3.18)

where the closure is taken with respect to theH 1-weak topology. And then by theorem 2.1
we know thatA is a global (weak) attractor forS(t). More precisely, we have the following.

Theorem 3.1.Let (3.1) hold. Then the setA defined by (3.18 ) satisfies that
(i) A is bounded and weakly closed inH 1(�) ∩Hα;
(ii) S(t)A = A, ∀t > 0;
(iii) for every bounded setX in H 1(�), S(t)X converges toA with respect to the

H 1-weak topology ast →∞.

Proof. This theorem can be derived by theorem 2.1 and the techniques of [13]. The details
are similar to that of [13], and so they are omitted here. �

We now apply the method introduced by Ball [15] to show thatA is actually the global
strong attractor inH 1(�).

Theorem 3.2.The global weak attractorA constructed in theorem 3 is actually the global
strong attractor inH 1(�).

Proof. Since a pointw belongs to the attractorA if and only if there exist two sequences
{w0

k}k∈N and{tk}k∈N such thatS(tk)w0
k converges tow weakly inH 1(�), where{w0

k} ∈ B,
the bounded absorbing set inH 1(�), tk → +∞. This theorem will be proved if we are
able to show that forw ∈ A, the sequenceS(tk)w0

k converges tow strongly inH 1(�).
Fix T > 0, by lemma 3.1 we know that the sequenceS(tk−T )w0

k is bounded inH 1(�),
and thenv ∈ H 1(�) and a subsequence exist, which are still denoted byS(tk − T )w0

k , such
that

S(tk − T )w0
k → v weakly inH 1(�). (3.19)

Setwk(t) = S(t)S(tk − T )w0
k = S(tk + t − T )w0

k , by theorem 2.1 and (3.19) we see that
wk(t)→ S(t)v weakly inH 1(�), andw = S(T )v.
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We note that ifu(t) is a solution of problem (2.1)–(2.3), then by taking the inner product
of (2.1) with u in H , we obtain that

d

dt
(‖u‖2+ ‖ux‖2)+ 2ν‖ux‖2+ 2

∫
�

(f (u))xu dx = 2(g, u). (3.20)

Similar to (3.7) we see that

2
∫
�

(f (u))xu dx = −2
∫
�

f (u)ux dx = 0. (3.21)

And then by (3.20), (3.21) we have

d

dt
‖u(t)‖2

H 1 + 2ν‖u(t)‖2
H 1 = 2ν‖u(t)‖2+ 2(g, u). (3.22)

This shows that

‖u(t)‖2
H 1 = e−2νt‖u(0)‖2

H 1 +
∫ t

0
e2ν(τ−t)K(u(τ)) dτ (3.23)

where

K(u) = 2ν‖u‖2+ 2(g, u). (3.24)

By compactness embeddingH 1(�) ⊂ H we can easily deduce thatK(u) is weakly
continuous inH 1(�). Because any solution satisfies (3.23), and then forwk(t) =
S(t)S(tk − T )w0

k , we infer that

‖wk(t)‖2
H 1 = e−2νt‖S(tk − T )w0

k‖2
H 1 +

∫ t

0
e2ν(τ−t)K(S(tk + τ − T )w0

k ) dτ. (3.25)

Taking t = T in (3.25), by the Lebesgue dominated convergence theorem we deduce that

lim sup
k→∞

‖S(tk)w0
k‖2
H 1 6 Ce−2νT +

∫ T

0
e2ν(τ−T )K(S(τ)v) dτ. (3.26)

The above is obtained by the boundedness ofS(tk − T )w0
k in H 1(�).

Applying (3.23) forw = S(T )v we have

‖w‖2
H 1 = e−2νT ‖v‖2

H 1 +
∫ T

0
e2ν(τ−T )K(S(τ)v) dτ. (3.27)

By (3.26) and (3.27) we have

lim sup
k→∞

‖S(tk)w0
k‖2
H 1 6 Ce−2νT + ‖w‖2

H 1 − e−2νT ‖v‖2
H 1. (3.28)

Let T →+∞, we find that

lim sup
k→∞

‖S(tk)w0
k‖2
H 1 6 ‖w‖2

H 1. (3.29)

On the other hand, by the weak convergence ofS(tk)w
0
k to w in H 1(�), we see that

lim inf
k→∞

‖S(tk)w0
k‖2
H 1 > ‖w‖2

H 1. (3.30)

And then we have

lim
k→∞
‖S(tk)w0

k‖2
H 1 = ‖w‖2

H 1. (3.31)

This along with the weak convergence implies the strong convergence. The proof of
theorem 3.2 is complete. �
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Quite analogous to [14] where we dealt with the finite-dimensionality of the global
attractor inH 2(�), we can also deduce the finite-dimensionality of the global attractorA
here. That is, we have the following.

Theorem 3.3.The global attractorA of theorem 3.1 has finite fractal and Hausdorff
dimensions inH 1(�).
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